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Direct numerical simulation (DNS) and large-eddy simulation (LES) are carried out
to investigate the frequency effect of zero-net-mass-flux forcing (synthetic jet) on
a generic separated flow. The selected test case is a rounded ramp at a Reynolds
number based on the step height of 28 275. The incoming boundary layer is fully
turbulent with Rθ = 1410. The whole flow in the synthetic jet cavity is computed to
ensure an accurate description of the actuator effect on the flow field. In a first step,
DNS is used to validate LES of this particular flow. In a second step, the effect of a
synthetic jet at two reduced frequencies of 0.5 and 4 (based on the separation length
of the uncontrolled case and the free-stream velocity) is investigated using LES. It is
demonstrated that, with a proper choice of the oscillating frequency, separation can be
drastically reduced for a velocity ratio between the jet and the flow lower than one. The
low frequency is close to the natural vortex shedding frequency. Two different modes
of the synthetic jet have been identified. A vorticity-dominated mode is observed in the
low-frequency forcing case for which the separation length is reduced by 54 %, while
an acoustic-dominated mode is identified in the high-frequency forcing case for which
the separation length is increased by 43 %. The decrease of the separation length in
the low-frequency forcing case is correlated with an increase of the turbulent kinetic
energy level and consequently with an increase of the entrainment in the separated
zone. A linear inviscid stability analysis shows that the increase of the separation
length in the high-frequency forcing case is due to a modification of the mean velocity
profile suggested by Stanek and coworkers. The result is a lower amplification of the
perturbations and consequently, a lower entrainment into the mixing layer. To our
knowledge, it is the first time that Stanek’s hypothesis has been assessed, thanks to
numerical simulations of fully turbulent flow.

1. Introduction
Separated flows occur in a wide range of engineering applications such as airfoils at

high angle of attack, turbomachines, combustors, diffusers, etc. Separation generally
has a negative impact on performance because it leads to reduced lift, increased drag
and pressure loss, noise generation and structural loads, etc.

Recently, in order to improve aerodynamic performance, many attempts have been
made to control turbulent separated flows. Among the available actuators for flow
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control, synthetic jets seem promising since they have been proven to efficiently
control separation (Seifert et al. 1993), to enhance mixing (Chen et al. 1999) and
to enable vector thrust (Smith & Glezer 2002). The main advantage of synthetic
jets compared to steady blowing or suction devices is that they require one or two
orders of magnitude less momentum to produce equivalent effects (Seifert et al. 1993).
They also do not require a complex piping system since the momentum expulsion is
only due to the periodic motion of a diaphragm or a piston on the lower wall of a
cavity.

Many studies have been devoted to separated flows in the past few decades. Among
them, the flow over a backward-facing step has received a considerable attention
because of its simple geometry and the fact that separation point is fixed. Table 1
presents a review of the values of the main flow frequencies reported in the literature
for several generic separated flows: flow over backward-facing steps, the recirculation
bubble at the leading edge of blunt flat plates and fence flows.

Two instabilities are generally observed in the separated region past a backward-
facing step: a convective one and an absolute one (see Huerre & Rossi 1998 for the
convective/absolute instability definition). The convective instability is the Kelvin–
Helmholtz (K-H) instability which originates in the natural periodic roll-up of the
shear layer, and leads to the growth of spanwise structures. This instability has
a Strouhal number based on the momentum thickness of the boundary layer at
the separation point θ of Stθ = 0.012. As indicated by Hasan (1992), the natural
instability frequency for the shear layer scales neither with the ramp height nor with
the separation length but rather with a shear layer characteristic length scale such as
the momentum or the vorticity thickness. The shear layer instability reduces to the
shedding mode via one or more vortex merging processes (Hasan 1992). To obtain
a relevant frequency scaling of the shedding mode, we define a Strouhal number F +

based on the separation length L and the free-stream velocity U∞. As it can be seen
in table 1, the shedding mode has a characteristic reduced frequency F + which ranges
from 0.6 to 0.8. Sigurdson (1995) proposed a different scaling based on the separation
bubble height H and the velocity at the separation point Us , which correlates the
shedding frequencies of a wide variety of separated flows. This scaling yields values
near 0.07–0.09 for all geometries. But a notable drawback is that it requires knowledge
of the separation bubble height which is often not measured in the experiments. For
backward-facing step flows, L/H =7 and Us = U∞ is used in Sigurdson (1995) to
convert the F + scaling into frequency scaling. The absolute instability is also called
the low-frequency flapping mode of the shear layer and it has been attributed by
Eaton & Johnston (1980) to an instantaneous imbalance between entrainment of fluid
by the mixing layer from the recirculation region and injection of fluid inside the
separation bubble near the reattachment point. The characteristic frequency of this
phenomenon is, depending on the authors, 5 to 12 times lower than the shedding
mode frequency, leading to 0.12 <F + < 0.18. It should be mentioned that there are
different opinions about the definition and physical explanation of the shedding and
flapping phenomena.

The efficiency of the shear layer forcing is observed to strongly depend on the forcing
frequency. For example, forcing at the natural shear layer instability frequency inhibits
merging and regulates the spacing between vortices (Ho & Huang 2002). On the other
hand, forcing at a subharmonic frequency of the natural instability enhances vortex
merging and the growth rate of the shear layer.

Active separation control over ramps or backward-facing steps has been studied
experimentally and numerically by many authors. Bhattacharjee, Scheelke & Troutt
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Configuration Study Kelvin–Helmholtz Shedding Flapping

Author type type h (mm) Reh L/h frequency, Stθ frequency, F+ frequency, F+

Mabey (1972) review E 0.6

Eaton & Johnston (1980) BFS E 50.8 Reθ =240 7 Stθ = 0.015 0.52

Reθ =850 7.95 0.52

Driver, Seegmiller & Marvin (1983) BFS E 12.7 40000 6.1 0.7 . . . 0.8

Cherry, Hillier & Latour (1984) FP E D = 38.1 32000 xr/D = 4.8 0.7 <0.125

Troutt, Sheelke & Norman (1984) BFS E 56 45000 6 1.5 . . . 3.9

Kiya & Sasaki (1985) FP E 2H = 20 26000 10.1 0.6 0.12

Adams & Johnston (1988a) BFS E 38.1 800 . . . 40000 4.9 . . . 6.7 0.49 0.16

Simpson (1989) review E 0.6 . . . 0.8 <0.1

Devenport & Sutton (1991) BFS E 35 35000 1.47 0.74 0.18

Neto et al. (1993) BFS N 38000 8.1 0.65

Sigurdson (1995) CC E D = 165 42000 . . . 132000 7 0.49 (f.h/Us = 0.07)

Chun & Sung (1996) BFS E 50 13000 . . . 33000 6.75 . . . 7.8 Stθ = 0.012 1

Le, Moin & Kim (1997) BFS N ER = 1.2 5000 6.28 0.41

Huang & Fiedler (1997) BFS E 20 4300 5 0.2

Heenan & Morrison (1998) BFS E 75 190000 5.5 1 0.1

Yang & Voke (2001) FP E Red = 3450 xr/d = 2.6 0.77 0.12 . . . 0.3

Tihon, Legrand & Legentilhomme (2001) BFS E 20 4800 5.1 0.65 0.15

Spazzini et al. (2001) BFS E 22 3500 . . . 16000 5 . . . 6.5 1 0.08

Lee & Sung (2002) BFS E 50 33000 7.4 0.48 0.1

Naguib & Hudy (2003) and F E 2H = 35 Re2H =25600 7.8 0.6 . . . 0.9 0.12 . . . 0.18

Hudy, Naguib & Humphreys (2003)

Table 1. Kelvin–Helmholtz, shedding and flapping frequencies for different flows (configuration type: BFS = backward-facing step, FP= flat-plate
leading edge, CC= circular cylinder aligned coaxially with the free stream F= fence; study type: E= Experiment study, N = Numerical study).
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(1986), Chun & Sung (1996), Yoshioka, Obi & Masuda (2001a, b) Wengle et al. (2001)
and Dejoan & Leschziner (2004), have reported a reduction of the recirculation length
by about 30 % for an optimal Strouhal number Sth � 0.2. This frequency does not
correspond to the low-frequency flapping of the shear layer but rather to the mixing
layer shedding mode at Stθ = 0.012 (Chun & Sung 1996). Chun & Sung (1998)
have found a higher optimal forcing Strouhal number Stθ = 0.025 and attribute this
discrepancy to their low Reynolds number. Liu, Kang & Sung (2005) have also found
a slightly higher optimal Strouhal number Sth � 0.275. Neumann & Wengle (2004b)
have performed a large-eddy simulation of separation control over a rounded step.
They also found an optimal Strouhal number Sth � 0.2 but this frequency does not
correspond to the optimal frequency Stθ = 0.012 of sharp-edge backward-facing step
flows. For a hump model, Seifert & Pack (2002) report an optimal reduced frequency
equal to F + = 1.6. For their inclined surface, Darabi & Wygnanski (2004a, b) have
reported an optimal excitation frequency F + = 1.5 for minimizing the reattachment
time.

Besides control at reduced frequency F + = O(1), a second control strategy based
on a high-frequency actuation (F + = O(10)) has been suggested recently. Amitay &
Glezer (2002) and Glezer, Amitay & Honohan (2005) observed that high-frequency
forcing is able to increase lift and reduce drag on an airfoil without the drawback
of increasing lift fluctuations as in the case of low-frequency forcing. The reason is
a virtual modification of the airfoil shape by the formation of a small recirculation
zone close to the actuator location which changes the pressure distribution. Using the
same kind of forcing, Stanek et al. (2000) observed a drastic reduction of the noise
level in their experiment on flow over a cavity. In particular, a strong attenuation
of the large-scale fluctuations has been found in the pressure spectra. Stanek et al.
(2002a, b), Vukasinovic, Lucas & Glezer (2005) and Rusak & Eisele (2005) explain
this observation as a modification of the mean velocity profile which stabilizes the
mean flow and prevents the growth of the Kelvin–Helmholtz instability.

Being aware of the importance of the excitation frequency, the main aim of the
present paper is to investigate the effect of two different flow control strategies: low-
frequency forcing and high-frequency forcing. Additionally, a secondary objective is
to demonstrate numerically that separation can be drastically reduced on a smooth
ramp by means of a synthetic jet with an exhaust velocity lower than the free-stream
one. This point is of particular importance for practical purposes since available
synthetic jet actuators have limited exhaust velocities.

Furthermore, accurate prediction of the mean separation point over smooth ramps
is still a challenging issue because separation is governed by an adverse pressure
gradient, unlike backward-facing step flows in which it is fixed by the geometry. With
accuracy reasons, advanced numerical methods such as direct numerical simulations
(DNS) and large-eddy simulation (LES) are used. With the same goal of accuracy,
the flow in the whole synthetic jet cavity is computed.

The article is organized as follows. In § 2, the flow configuration is presented.
The key elements of the numerical method, subgrid modelling, computational grid
and boundary conditions are described in § 3. In § 4, LES of the uncontrolled case
is validated via comparison with DNS results. The separated region features are
compared to those of free mixing layers and backward-facing step flows. Natural
instability frequencies of this flow are found. In § 5, the influence of the synthetic jet
frequency on the separation bubble is studied by means of LES in order to limit the
computational cost. Lastly, the main results are summarized in § 6.
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Figure 1. (a) Flow configuration with the synthetic jet cavity and the computational domain
dimensions and (b) LES grid in the (x, y)-plane.

2. Flow configuration
The flow configuration is displayed in figure 1(a). We consider a rounded backward-

facing step with shape is defined by
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with a = 0.703. The step height is h = 20 mm and the maximum slope is equal to 35◦.
This configuration is selected because of its relevance for separated flows encountered
in aeronautical applications such as air intakes. However, in order to prevent some
difficulties related to internal flow simulations, an external flow is considered here.
The stagnation pressure is 20 011 Pa and the stagnation temperature is 283 K. The
kinematic viscosity ν is equal to 7.15 × 10−5 m2 s−1. The Mach number is set equal
to 0.3 and the free-stream velocity is 101 m s−1. The boundary layer thickness δ at
the inlet plane of the computational domains is 0.5h and its momentum thickness θ
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is 0.05h. The Reynolds number based on the momentum thickness is Rθ = 1410 as
in the DNS of a turbulent boundary layer of Spalart (1988). The Reynolds number
based on the step height and the free-stream velocity Reh is 28 275. The synthetic
jet orifice consists of a two-dimensionnal slot of width d = δ/3 =h/6. Its windward
edge is located at the mean separation point of the uncontrolled flow computed by
DNS following the methodology proposed in Neumann & Wengle (2004b). The cavity
height is d and its width is 3d .

The coordinate system is the following: x is oriented in the streamwise direction, y

is vertical and z is in the spanwise direction. The origin is located at the beginning of
the ramp.

3. Numerical method
The code FLU3M is a finite-volume solver for the compressible Navier–Stokes

equations. For LES, the filtered equations are obtained using the formalism developed
by Vreman (1995). The subgrid-scale model is the selective mixed scale model detailed
by Sagaut (2002). The time integration is carried out by means of the second-order-
accurate backward scheme of Gear. More details about the numerical method are
available in Péchier, Guillen & Gayzac (2001). The time step is taken equal to 0.0025
h/U∞ for all simulations. The spatial scheme is the one proposed by Mary & Sagaut
(2002). It is based on a modification of the AUSM+(P) scheme (see Edwards &
Liou 1998) whose dissipation is proportional to the local fluid velocity, and so it is
well adapted to low-Mach-number simulations. The accuracy of the solver for DNS
and LES purposes has been assessed in various applications (Mary & Sagaut 2002;
Larchevêque et al. 2004; Deck 2005a, b; Dandois, Garnier & Sagaut 2006).

Two grids with the same spatial extent are used for the computations. Each
is composed of a three-dimensional grid which encompasses the turbulent region
and a two-dimensional region for y/h > 2 in which the flow is quasi-potential.
The streamwise length of the computational domain is 16h (5.5h upstream of
the separation point and 7.5h downstream of the reattachment point), its spanwise
extent is 4h and its height is 6h upstream of the ramp. The DNS grid includes
1008×68×400 = 28×106 cells. Grid spacings are �x+ = 16, �y+

min = 0.5 and �z+ = 12,
in agreement with the grid resolutions reported in the literature of DNS of separated
flows: �x+ = 10, �y+

min = 0.3 and �z+ = 15 in Le et al. (1997) and �x+ =18.3,
�y+

min = 0.11 and �z+ = 10.5 in Na & Moin (1998). The wall unit scaling is based on
the friction velocity taken at the inlet of the computational domain. The LES grid has
345×68×268 =7×106 cells. Grid spacings are: �x+ = 50, �y+

min = 0.5 and �z+ = 18.
A view of the LES grid in the (x, y)-plane is displayed in figure 1(b).

Computations have been performed on four NEC-SX6 processors. The CPU time
required for one flow-through time (i.e. the time it takes for a fluid particle in the free
stream to cross the computational domain) is 144 hours for the DNS and 36 hours for
the LES. In the uncontrolled case, samples were collected during fifteen and twenty
five flow-through times for the DNS and the LES respectively. In the controlled
cases, a transient time equivalent to two flow-through times was necessary to reach
the periodic regime. Then, five flow-through times were found sufficient to obtain
converged statistics.

To simulate the diaphragm displacement, a blowing/suction condition with a top-
hat distribution with sinusoidal time variation is implemented on the whole cavity
bottom surface: u(x, t) =U0 cos(2πf t). This boundary condition has been successfully
validated in a previous study (Dandois et al. 2006) and by comparison with
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Figure 3. Time-averaged streamwise velocity x/h + u/U∞ (solid line: DNS,
dashed line: LES).

simulations based on the arbitrary Lagrangian Eulerian (ALE) numerical technique
for which the real sinusoidal motion of the bottom surface was computed. Figure 2
displays a vertical velocity isosurface during the blowing phase. It emphasizes the
three-dimensional character of the flow in the cavity, showing that the computation
of the whole actuator cavity is a mandatory requirement to recover an accurate
description of the synthetic jet effect on the separation.

For these computations, a realistic turbulent inflow boundary condition based on
an extraction/rescaling technique is used. The technique used in the present work is
the extension to compressible flows of the method proposed in Lund, Wu & Squires
(1998) given in Sagaut et al. (2004).

4. LES validation and analysis
4.1. Global analysis

The DNS computation is used here as a database to validate the LES results. Figure 3
displays the evolution of the mean streamwise velocity u. Both computations lead to
very similar results. Only slight differences occur in the recirculation zone, but are
lower than 6 %. It can be noted that the same maximum backflow velocity −0.16U∞
is found in both computations.
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Figure 4. Time-averaged streamwise velocity fluctuation x/h + urms/40 (solid line: DNS,
dashed line: LES).

The time-averaged streamwise positions of the separation xs and reattachment xr

points are xs/h= 0.53 (0.51) and xr/h= 3.93 (3.96) for the DNS and the LES,
respectively. Compared to the DNS, the LES separation length (xr − xs)/h is
overestimated by only 1.6 %. A Reynolds-averaged simulation based on the Spalart–
Allmaras turbulence model and the rotation correction by Dacles-Mariani et al.
(1995) yields xs/h= 0.55 and xr/h= 6.3. The separation point is predicted well but
the reattachment is too far downstream which leads to an overestimation of the
separation bubble extent by about 70 %.

The streamwise velocity fluctuation urms (see figure 4) obtained by LES is in very
good agreement with the DNS, in particular in the separated region.

A comparison of the instantaneous turbulent structures for the two cases is
displayed in figure 5. Because of the turbulent incoming boundary layer, two-
dimensional spanwise structures are not visible with a Q-criterion isosurface plot
but they could be observed with pressure isosurfaces or by using the first POD
modes as in Neumann & Wengle (2004a). As expected, figure 5 shows finer turbulent
structures in the DNS solution than in the LES field.

4.2. Mixing layer and separation bubble analysis

This section is devoted to the description of the transition region between the turbulent
boundary layer and the self-similar shear layer.

Figure 6 displays the spanwise two-point auto-correlation of u, v and p in the mixing
layer at location (x/h= 2.5, y/h= −0.5). The correlation level for the streamwise
velocity decreases very quickly and tends to zero for z/h > 0.2. For the vertical
velocity v, the correlation falls below 0.1 for z/h > 0.6. For the pressure, the correlation
level reaches a plateau at about 0.3 for z/h > 0.6. This higher correlation level for
the pressure than for u and v velocities is due to the acoustic waves radiated by
the mixing layer. These results justify a posteriori that the spanwise extent of the
computational domain is sufficient.

The streamwise mean velocity profiles of the mixing layer computed via LES
are plotted in similarity coordinates in figure 7. The η coordinate is defined as
η = (y −yc)/δω where δω is the vorticity thickness and yc is the location of the velocity
gradient maximum (see Jovic 1996). For x/h � 2 and η � 0, all the curves collapse
reasonably well which implies that the streamwise velocity has reached its similarity
state. The differences that occur for x/h � 2 and η < −0.5 are due to the ramp shape.

Figure 7 also displays the profiles of Reynolds stresses in similarity coordinates.
At the beginning of the mixing layer, the Reynolds stresses decrease from the initial
high values of the boundary layer to classical mixing layer values: u2

rms/�U 2 decreases
for 1 � x/h < 2 and u′v′/�U 2 decreases for 1 � x/h < 2.5. Then, they increase up to
the reattachment point. On the other hand, v2

rms/�U 2 increases for 1 � x/h < 1.5,
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Authors Type u2
rms/�U 2 v2

rms/�U 2 u′v′/�U 2

Ruderich & Fernholz (1986) M 0.025 0.025 0.01
Oster & Wygnanski (1982) M 0.032 0.023 0.013
Castro & Haque (1987) F 0.06 0.06 0.025
Jovic (1996) BFS 0.04 0.022 0.015
Chandrsuda & Bradshaw (1981) BFS 0.03 0.015 0.011
Friedrich & Arnal (1990) (LES) BFS 0.05 0.020 0.016
Present case (LES) BFS 0.065 0.036 0.026

Table 2. Normal and shear stress maximum level for mixing layer (M), backward-facing step
(BFS) and fence flows (F).

decreases for 1.5 � x/h < 2.5 and then increases up to the reattachment point. Table 2
gives the maximum level of normal and shear stresses observed in the literature for
free mixing layers, backward-facing step flows and flows behind a fence, compared
to the present case (LES). In their experiment on a separated shear layer behind
a flat plate normal to the flow, Castro & Haque (1987) have observed that normal
stresses are always higher than in a plane mixing layer. Here, the maximum level of
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Figure 8. (a) Momentum thickness θ/h and (b) vorticity thickness δω/h evolution along the
mixing layer for the LES.

u2
rms/�U 2 is close to the value found by Castro & Haque (1987) but higher than in the

experiments of Jovic (1996) and Chandrsuda & Bradshaw (1981). The maximum level
of v2

rms/�U 2 is also higher than in the experiments of Jovic (1996) and Chandrsuda &
Bradshaw (1981) but lower than in the experiment of Castro & Haque (1987). So, the
two levels found here are higher than in previous experiments on backward-facing
step flows, perhaps because of the present ramp geometry. The backflow velocity is
higher and the separation bubble is thinner than for backward-facing step flows.

The maximum value of the shear stress −u′v′/�U 2 (figure 7) is also close to the
value found by Castro & Haque (1987) but higher than in the experiments of Jovic
(1996) and Chandrsuda & Bradshaw (1981).

The mixing layer streamwise evolution can be analysed by computing the momen-
tum and vorticity thicknesses (see figure 8). Note that the incompressible momentum
thickness has been used here because the ratio of the maximum to the minimum
density is as low as 1.037. Because of the strong backflow velocity amplitude (16 %
of U∞), this reverse flow has been taken into account in the definition of the two
thicknesses.

The momentum thickness is defined

θ(x) =

∫ +∞

ymin

ū(x, y) − umin(x)

U∞ − umin(x)

(
1 − ū(x, y) − umin(x)

U∞ − umin(x)

)
dy (4.1)

with ū(x, y) the time-averaged and spanwise-averaged streamwise velocity and
umin(x) = min[y](ū(x, y)).

In their experiment of free mixing layers, Browand & Troutt (1985) found that the
growth rate of the momentum thickness was accurately fitted by

dθ

dx
= 0.034R (4.2)

with

R =
�U

2U
=

U∞ − umin(x)

U∞ + umin(x)

the velocity ratio. As the velocity ratio varies between 1.22 and 1.36 for 1 � x/h � 2
in our case, dθ/dx should be equal to 0.041–0.046 according to relation (4.2). Here,
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Figure 9. Ratio between vorticity thickness δω and momentum thickness θ
along the mixing layer.

the growth rate (equal to 0.1) is more than twice the value expected for a free mixing
layer. This is due to the recirculation of the turbulent structures which are reabsorbed
into the mixing layer.

The vorticity thickness is defined

δω(x) =
U∞ − ulow(x)

max[y]

(
∂ū(x, y)

∂y

) . (4.3)

For the vorticity thickness (figure 8b), two regions can be observed in the mixing layer
as in Larchevêque et al. (2004). The first one, located between x/h =0 and x/h = 1,
exhibits a large growth rate. This growth is exponential as predicted by linear stability
theory. The second region is wider with a constant growth rate equal to 0.57. Browand
& Troutt (1985) give a growth rate

dδω

dx
= 0.17R. (4.4)

As the velocity ratio varies between 1.22 and 1.36 for 1 � x/h � 2, dδω/dx should be
equal to 0.2–0.23. For the momentum thickness, the growth rate (equal to 0.57) is
more than twice the expected value in a free mixing layer. The present shear layer
differs from the canonical plane mixing layer by the fact that the low-speed-side flow
is highly turbulent as opposed to the low-turbulence-level stream in a plane mixing
layer. Jovic (1996) and Castro & Haque (1987) have also reported a higher growth
rate in their experiments.

The ratio between the momentum and vorticity thicknesses is shown in figure 9.
It is noteworthy that this ratio reaches a constant value close to 4.5 for x/h � 1.5.
Moreover, Castro & Haque (1987) and Larchevêque et al. (2004) have observed for
their mixing layers that the ratio between the spreading rates of the momentum and
vorticity thicknesses has a value close to 5. With a ratio of the growth rates of 5.7,
the present computation is close to this observed value.
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Figure 10. Mean streamwise velocity field showing locations of the pressure
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Figure 11. LES pressure spectra along the mixing layer for six sensors (C1, C2, C5, C6, C8
and C10).

Figure 10 presents the locations of ten sensors, referred to as C1 to C10, from
which pressure spectra are computed. These spectra are shown in figure 11 for six
of the sensors. The length of time records in the LES is 0.0836 s, the sampling
frequency is 200 kHz, the number of overlapping blocks is 15, which results in a
97 Hz resolution frequency. At the beginning of the shear layer, i.e. at sensors C1
and C2, a broadband spectrum corresponding to the shear layer roll-up is observed.
As will be shown in figure 32, the Kelvin–Helmholtz frequencies observed in these
spectra are close to the most amplified frequencies computed via to a linear inviscid
stability analysis. Further downstream, for sensor C5, two distinct peaks are present:
one around 1600 Hz (F + =1.14 ± 0.07) and a second at half the previous frequency
(F + =0.57 ± 0.07). The second peak is close to the range of the expected shedding
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Figure 12. LES frequency–wavenumber pressure spectra estimator Ψ (f, k) for
19 sensors along the wall.

frequency (0.6 < F + < 0.9). The energy level of the first peak is larger than that of
the second peak for sensors C3 to C4 while its subharmonic dominates for sensors
C5 to C10. The growing subharmonic is due to vortex pairing inside the mixing
layer. This vortex merging takes place near sensor C5 at x/h = 2. This observation is
corroborated by figure 8 in which the shear layer vorticity thickness reaches a plateau
for x/h � 2. As demonstrated by Ho & Huang (2002), the start of the plateau marks
the vortex merging location. Also, a low-frequency flapping phenomenon has been
reported in the experiments of Eaton & Johnston (1981), Cherry et al. (1984), Kiya
& Sasaki (1985) and in the simulations by Yang & Voke (2001). In our case, no
evidence of such a flapping of the shear layer has been found.

Figure 12 displays the LES frequency–wavenumber pressure spectra for 19
sensors uniformly distributed along the wall between the separation point and the
reattachment one. The spectrum estimator Ψ (f, k) is based on the cross-spectrum
between the points xi and xj written as Sxixj

, and is defined

Ψ (f, k) = P(k)HM(f )P(k) (4.5)

where H indicates the Hermitian transpose and M and P are defined

Mij (f ) = Sxixj
(f ), (4.6)

Pi(k) = exp(ikxi). (4.7)

Convective phenomena are identified by regions of constant ratio ω/k, where ω

is the pulsation and k the wavenumber. The advantage of frequency–wavenumber
spectra with respect to two-point two-time correlations is that they make it possible
to distinguish between multiple convection velocities. Moreover, each convective
phenomenon can be linked to a fundamental frequency. A convection velocity of 0.5U∞
is clearly observed. This velocity corresponds to the signature of shear layer structures
on the wall. This is the expected convection velocity of the Kelvin–Helmholtz two-
dimensional structures (see table 3). Moreover, no zero convection velocity has been
found and consequently there is no low-frequency flapping of the shear layer, as
previously observed in the pressure spectra.
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Author Type Convection velocity

Brown & Roshko (1974) M 0.53U∞
Cherry et al. (1984) FP 0.5–0.63U∞
Kiya & Sasaki (1985) FP 0.5U∞
Simpson (1989) review 0.6U∞
Kiya et al. (1997) FP 0.5U∞
Heenan & Morrison (1998) BFS 0.5–0.6U∞
Lee & Sung (2001) BFS 0.6U∞
Yang & Voke (2001) FP 0.58U∞
Hudy et al. (2003) F 0.57U∞
Morris & Foss (2003) M 0.5U∞
Larchevêque et al. (2003) CM 0.65U∞
Dejoan & Leschziner (2004) BFS 0.4U∞
Larchevêque et al. (2004) CM 0.53U∞
Liu et al. (2005) BFS 0.56U∞
Present case BFS 0.5U∞

Table 3. Shear layer vortices convection velocity for different flows (Configuration type:
M= mixing layer, BFS = backward-facing step, F = fence, FP = flat-plate leading edge,
CM= mixing layer past a cavity).
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Figure 13. LES mean streamwise velocity profiles of the reattached flow in semi-log
coordinates with ‘universal’ logarithmic law U/uτ = (1/0.41) ln(uτy/ν) + 5.2.

4.3. Recovery region

In the recovery region, the separated shear layer impinges on a solid wall and begins
to relax toward an equilibrium turbulent boundary layer. The development of this
turbulent boundary layer is far from being instantaneous. In the experiment of Jovic
(1996), an equilibrium state for the turbulent boundary layer is not reached before
more than fifty ramp heights. At the reattachment point, the flow is dominated by
mixing layer turbulent structures. Then, in the internal layer, turbulent boundary layer
structures compete with mixing layer ones. Figure 13 displays the mean streamwise
velocity profiles of the reattached flow in semi-log coordinates. It is apparent that
the velocity profiles are far from the universal log law. The presence of a large
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Figure 14. LES urms, vrms and u′v′ Reynolds stresses profiles of the reattached flow in
semi-log coordinates.

wake zone is due to the mixing-layer-like flow near reattachment. As the turbulent
boundary layer redevelops with x/h, the friction velocity increases and consequently
the non-dimensionalized velocity decreases in the wake zone whereas it increases in
the logarithmic zone. At the end of the computational domain, the velocity profiles
still do not collapse with the logarithmic law.

Normal and shear Reynolds stress profiles are shown in figure 14. All the Reynolds
stresses decrease while the boundary layer is relaxing. Downstream of reattachment,
the non-dimensionalized Reynolds stresses decay rapidly as the friction velocity
increases, the maximum values of urms/uτ and vrms/uτ fall by approximately 30 %
and the maximum value of uv/u2

τ is halved between x/h = 5 and x/h = 6. For the
backward-facing step flow of Jovic (1996), the urms profile exhibits a plateau where
urms/uτ � 4.5 for 20 < y+ < 300. The plateau region is broader and propagates away
from the wall with downstream distance. Jovic (1996) interpretes this plateau as a
region where the wall and the external layer influences overlap. As the recovering
boundary layer thickens, this region moves away from the wall. The plateau region
can be identified as the limit between two distinct layers: the internal boundary
layer and the outer layer which is characterized by a strong memory effect of the
mixing-layer type of Reynolds stress production.

In summary, a comparison between the DNS and the LES mean velocities and
Reynolds stress profiles has demonstrated the capability of LES to accurately predict
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the present separated flow. The Reynolds stress maximum levels are a little higher
than in the backward-facing step flow, a fact which can be explained by the thinner
separation bubble in the present case. The momentum and vorticity thicknesses are
higher than for a free mixing layer because of the recirculation and re-entrainment
of vorticity at the separation point. The next part will be devoted to the study of the
controlled flow.

5. Controlled flows
The reduced frequency and momentum coefficient are the two most important non-

dimensional parameters for separation control by periodic oscillations. The reduced
frequency is defined

F + = f L/U∞. (5.1)

Here, L =3.45h is the separation length without control computed from DNS. Two
synthetic jet frequencies have been considered: F + =0.5 (f = 720 Hz, Sth = 0.14,
Stθ0

= 0.007 with θ0 = 0.05h the incoming boundary layer momentum thickness) and
F + = 4 (f = 5800 Hz, Sth = 1.1, Stθ0

= 0.057).
The reduced frequency value F + = 0.5 has been reported to be the most effective

in previous papers (Brunn & Nitsche 2003; Narayanan & Banaszuk 2003; Kiya,
Shimizu & Mochizuki 1997) and in two-dimensional unsteady Reynolds-averaged
Navier–Stokes simulations with the Spalart–Allmaras turbulence model (not shown
here). This frequency is close to the shedding mode frequency F + = 0.57 found in the
pressure spectra of the uncontrolled flow (figure 11).

The F + =4 actuation frequency has been chosen to study the effect of high-
frequency forcing control. The purpose here is twofold. The first is to study the
‘virtual aeroshaping effect’ discussed by Amitay & Glezer (2002) and Glezer et al.
(2005). These authors observed that forcing at a frequency F + = O(10) is able to
suppress separation without the drawback of increasing the lift fluctuation level as
in the low-frequency control case. The second goal is to investigate the large-scale
fluctuation level decrease as observed by Stanek et al. (2000, 2002 b). The low- and
high-frequency forcing cases will be hereafter denoted LF and HF, respectively.

The momentum coefficient is defined

Cµ =
ρjdU 2

j

ρ∞LU 2
∞

(5.2)

with d the actuator slot width, and Uj the synthetic jet velocity at the orifice. For the
two controlled cases, the momentum coefficient Cµ is 1 % which gives a velocity ratio
between the synthetic jet and the crossflow equal to 0.5. In our case, the synthetic jet
maximum velocity is 50 m s−1 which is a reasonable value for current actuators.

One important parameter for the synthetic jet is the non-dimensionalized stroke
length L0/d defined

L0 =

∫ T/2

0

ũ(t) dt (5.3)

where ũ(t) is the velocity averaged on the orifice surface and T the synthetic jet
period.

This stroke length can be expressed as a function of the jet Strouhal number:

L0

d
=

U0

f.d
=

1

St0
(5.4)
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Figure 15. Q-criterion isosurface Q = 4U 2
∞/h2: (a) LF case, (b) HF case.

where U0 is defined as L0/T . This last equation shows that the non-dimensionalized
stroke length is the inverse of the jet Strouhal number.

A synthetic jet is formed if the vortex pair or ring formed during blowing is not
reabsorbed during suction. A jet formation criterion is that the non-dimensionalized
stroke length for a two-dimensionnal slot must be larger than 3 for a synthetic jet
in quiescent air (Holman et al. 2005) and larger than 2 in a boundary layer (Shuster
et al. 2005). Here, for the LF forcing L0/d is equal to 6.3 whereas it is equal to 0.78
for the HF forcing. So, according to the criterion of Shuster et al. (2005), a synthetic
jet should not form in the HF case but as will be shown in the following, the actuator
still has a significant effect on the flow.

In the following section, the reduced frequency effect on the separated flow is
studied using the LES which has been validated in the first part of the paper.

5.1. Instantaneous flow

A comparison of the instantaneous turbulent structures for the two controlled cases
is displayed in figure 15. In the LF case, the actuation has strongly modified the flow
by generating spanwise vortex. The flow seems to be reattached between each vortex.
On the other hand, the HF forcing effect on the flow is less visible.
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Figure 16. Instantaneous pseudo-schlieren visualization at the same instant as figure 15:
(a) LF case, (b) HF case.

Instantaneous pseudo-schlieren visualizations for the two controlled cases are shown
in figure 16. These visualizations are obtained by the computation of ||gradρ||:

Sch(x, y) =

√(
∂ρ

∂x

)
+

(
∂ρ

∂y

)
. (5.5)

In the LF case, spanwise vortices are visible near the actuator location and at x/h =2
and 5. The mixing layer has been replaced by series of downstream-travelling large
spanwise vortices. Noteworthy in the HF case is the presence of acoustic waves
created by the actuator. It is easy to verify that the acoustic wave frequency is equal
to the forcing frequency since the wavelength is approximately equal to 2h upstream
of the actuator and the sound velocity is equal to U∞ − c = 101 − 337 = −236 m s−1 so
f =236/(2 × 0.02) � 5800 Hz. Moreover, the Kelvin–Helmholtz vortices of the mixing
layer are clearly visible.

In summary, examination of these instantaneous visualizations suggests that the
acoustic contribution is important in the HF case whereas the LF actuation produces
essentially vorticity.

5.2. Mean flow

The mean streamwise velocity field is displayed in figure 17 with streamlines showing
the extent of the separation bubble. The separation bubble is almost suppressed in
the LF case and is thinner than in the uncontrolled case. On the other hand, the
separation bubble size in the HF forcing case is dramatically increased. There is a
small low-velocity zone on the windward edge of the jet but the flow remains attached
between x/h= 0.5 and x/h= 0.9 (see figure 18). So the increase of the separation
length for the HF case is not due to an earlier separation and no blockage effect of
the jet can be found. Nevertheless the actuation thickens the boundary layer and we
can anticipate that the stability properties of the mean velocity field are affected by
such a forcing. The use of the previous synthetic jet formation criterion of Shuster
et al. (2005) is not relevant to the present case because even if a synthetic jet were
not to form in our case, it is obvious here than the actuation has a strong effect on
separation.

The forcing effect on the mean streamwise velocity u and its fluctuations urms is
shown in figures 19 and 20, respectively. At x/h = 2, the backflow velocity amplitude
is lower in the LF case and higher in the HF case than in the baseline case. The
maximum backflow velocity is equal to 16 % of U∞ for the uncontrolled flow, 9 % of
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Figure 17. Mean streamwise velocity field and streamlines showing the extent of the
separation bubble: (a) uncontrolled flow, (b) LF case and (c) HF case.
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Figure 18. Time-averaged streamwise velocity field close to the separation point:
(a) uncontrolled flow, (b) LF case and (c) HF case.
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Figure 19. Time-averaged streamwise velocity x/h + u/U∞ for the three cases: uncontrolled
flow (solid line), LF case (dashed line) and HF case (dotted line).
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Figure 20. Time-averaged streamwise velocity fluctuations x/h + urms/40 for the three cases:
uncontrolled flow (solid line), LF case (dashed line) and HF case (dotted line).
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Figure 21. Time-averaged streamwise velocity profile for the uncontrolled flow (solid line)
and the HF case (dashed line) at (a) x/h = 0.9 and (b) x/h = 1.6 locations.

U∞ for the LF case and 21 % for the HF case. Downstream of x/h = 3, the boundary
layer in the LF case redevelops earlier than in the uncontrolled case near the wall.

Figure 21 displays a closer view of the mean streamwise velocity near x/h = 0.9 (a)
and x/h= 1.6 (b). The HF forcing modifies the inflection point of the velocity
profile compared to the uncontrolled case. As observed by Stanek et al. (2002a),
there are four inflection points in the HF forcing case at x/h = 0.9 (a). According
to Fjortoft’s theorem (Huerre & Rossi 1998), if y0 is the position of the inflection
point (d2U (y0)/dy2 = 0), then a necessary (but not sufficient) condition for an inviscid
instability to exist is that (d2U (y)/dy2)(U (y) − U (y0)) < 0 for some y. The nearest
inflection point from the wall (y/h= −0.016) is stable according to Fjortoft’s theorem
whereas the second one (y/h= 0) is unstable. The third and fourth inflection points
(y/h = 0.2; 0.44) are associated with low streamwise velocity vertical gradient so their
influence on the development of the perturbations in the mixing layer is weak. The
unique inflection point of the uncontrolled case is also unstable. The stability of
the first inflection point in the HF case is used by Stanek et al. (2002a, b) to explain
the lower energy level of the large scales. However, at the x/h = 1.6 location (see
figure 21b), there is only one inflection point in both cases. A stability study of the
velocity profiles is required to draw conclusions on the stability properties of the HF
forcing flow.
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Figure 22. Surface pressure coefficient Cp (a) and skin-friction coefficient Cf (b) for the
three cases: uncontrolled flow (solid line), LF case (dashed line) and HF case (dotted line).

From figure 20, one can observe that, in the actuator vicinity at x/h = 0 and
x/h=1, the level of streamwise velocity fluctuations of the two controlled cases is
higher than in the uncontrolled case.

In the LF case, downstream of the reattachment, the urms level is higher than in
the baseline case near the wall because of the earlier boundary layer redevelopment.
These results differ from those of Neumann & Wengle (2004b) who report a lower
level of urms in the controlled case downstream of reattachment. This may be due to
the higher level of excitation in the present case (Uj/U∞ = 0.5 instead of 0.2).

In the HF case urms is lower than in the uncontrolled case at all positions down-
stream of the reattachment point. Unlike the uncontrolled and LF cases, urms is
higher upstream of the actuator. At high frequency, the synthetic jet operates in an
acoustic-radiation mode as reported by Ingard (1953). High-amplitude sound waves
are created by the diaphragm oscillations at the bottom of the cavity and propagate in
all directions. These waves interact with the vortical velocity field to produce velocity
fluctuations. On the other hand, the LF case corresponds to the synthetic jet mode
according to the Ingard’s classification, in which the main mechanism is vorticity
generation. Nevertheless, it is worth noting that in both controlled cases the sound
pressure level (in the whole computational domain) is higher than in the uncontrolled
case.

Figure 22 displays the surface pressure coefficient Cp =(p∞ −p)/(0.5ρ∞U 2
∞) and the

skin-friction coefficient Cf for the three cases. The separation points are xs/h= 0.91
for the LF case and xs/h= 0.68 for the HF case. The reattachment points are
xr/h= 2.49 for the LF case and xr/h= 5.39 for the HF case. The separation length
is reduced by 54 % for the LF case at F + = 0.5. The increase of the separation length
by 43 % for the HF case is not due to the earlier separation because the separation
process is delayed for the two controlled cases. The effect of the actuator cavity was
investigated by LES with the actuator cavity but without the forcing. The results show
that the separation length is nearly the same as in the baseline case (L = 3.49h with
the cavity and 3.45h without it). The mean streamwise velocity field with and without
the cavity is displayed in figure 23. There are only weak differences in the separation
bubble between the two cases which explains the slightly different separation length.
Therefore the effect of the actuation is not due only to the presence of the actuator
cavity but also to the synthetic jet generated by the diaphragm oscillations.
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Figure 23. Mean streamwise velocity field: uncontrolled flow without the cavity (solid line)
and with the cavity (dashed line).
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Figure 24. (a) Momentum thickness θ and (b) vorticity thickness δω evolution along the
mixing layer: uncontrolled flow (solid line), LF case (dashed line) and HF case (dotted line).

It is clear that the synthetic jet frequency has a strong effect on the pressure
distribution. The pressure plateau characteristic of separated flows is only apparent
in the HF case pressure distribution. In the LF case, both lift and drag are lower
than in the uncontrolled case whereas in the HF case, the opposite is observed.

Figure 24(a) shows that the momentum thickness growth rates in the uncontrolled
case and in the LF forcing case are nearly identical with dθ/dx � 0.1. For the HF
case, the momentum thickness remains nearly constant between x/h = 1.5 and 2.8.
The momentum and vorticity thicknesses in the uncontrolled and LF cases are nearly
identical. The effect of the HF forcing is a reduction of the momentum and vorticity
thicknesses growth rates.

Figure 25 details the effect of the forcing frequency on the mean spanwise vorticity.
Despite the spanwise vorticity source provided by the actuator, the level for the LF
case is nearly equal to that for the uncontrolled case but its maximum is closer to the
wall. This is due to the spanwise vortices formed during the actuator blowing phase
being convected along the wall. As the separation has been delayed to x/h = 0.91,
there is a higher vorticity level for 0.5 � x/h � 1.2 close to the wall corresponding
to higher friction. In the HF case, the spanwise vorticity level is higher than in
the two other cases but the mixing layer is deflected away from the wall so less
high-momentum fluid is carried towards the wall.
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Figure 25. Forcing frequency effect on the mean spanwise vorticity ωz. (a) Uncontrolled
case, (b) LF case, (c) HF case.
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Figure 26. Turbulent kinetic energy k along the line of its maxima for the three cases:
uncontrolled flow (solid line), LF case (dashed line) and HF case (dotted line).

The streamwise evolution of the maximum of turbulent kinetic energy (TKE) is
displayed in figure 26. Unlike to the LF forcing, the HF forcing induces a decrease
of the turbulent kinetic energy level for 1 � x/h � 6. For example, at x/h = 3, the
TKE level is 17 % higher in the LF case than in the uncontrolled case whereas it
is 38 % smaller in the HF case. In both controlled cases, one can observe a TKE
peak downstream of the actuator. This peak is closer to the actuator location for the
HF case (x/h= 0.8) than for the LF case x/h = 1.2 since the forcing wavelength is
smaller for the HF case than for the LF case.
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Figure 27. Forcing frequency effect on the turbulent kinetic energy production P/(U 3
∞/h).

(a) Uncontrolled case, (b) LF case, (c) HF case.

Figure 27 shows the spatial distribution of the turbulent kinetic energy production
term, defined

P = −u′2 ∂ū

∂x
− v′2 ∂v̄

∂y
− u′v′

(
∂ū

∂y
+

∂v̄

∂x

)
. (5.6)

The analysis is restricted to the production term since it is the main contributor to
the TKE budget. Scarano, Benocci & Riethmuller (1999) observed that vortex roll-up
takes place in regions of high TKE production. In the LF case, the level of TKE
production is twice that in the uncontrolled case and three times higher than in the
HF case. In this latter case, the TKE production is negative in the synthetic jet and at
x/h= 1 whereas it is positive on its upstream and downstream edges. In summary, the
effect of the low-frequency forcing is an increase of the TKE production in contrast
to the high-frequency forcing.

5.3. Spectral analysis

The frequency–wavenumber pressure spectra for the three cases are shown in figure 28.
The mean convection velocity measured between the ten sensors is 0.5U∞ for the
uncontrolled case, 0.33U∞ for the LF case and 320 m s−1 for the HF case.

The convection speed of the LF case is lower than in the uncontrolled case
because of the larger circulation of the vortices formed by the actuation. The mean
velocity between sensors C1 and C10 is 13 m s−1. The sound velocity u+c is 13 +337 =
350 m s−1 with c the sound velocity in the flow frame of reference. The 320 m s−1 con-
vection speed found with the frequency–wavenumber pressure spectra in the HF case
is in acceptable agreement with sound velocity considering the uncertainty of the esti-
mator. This, together with the instantaneous pressure field shown in figure 16, confirms
that, in the HF case, the synthetic jet operates in an acoustic-dominated mode.

Figure 29 presents the pressure spectra for four sensors C1, C3, C5 and C10. The
fundamental and the harmonics of the forcing frequency for the two controlled cases
are clearly identified. There is a locking of the shear layer at the forcing frequency in
the two controlled case, but no subharmonics of the forcing frequency are detected.
This demonstrates the absence of vortex merging in the two controlled cases. Owing
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Figure 28. Frequency–wavenumber pressure spectra estimator Ψ (f, k) (a) Uncontrolled case,
(b) LF case, (c) HF case.

to the energy input of the forcing, the level of the entire spectra of the two controlled
cases is higher than that of the uncontrolled case for the sensor C1. For the sensors
C3, C5 and C10, the effect of the LF forcing is only visible on the large-scale range for
f � 6000 Hz, unlike the HF forcing which energizes all the spectrum. As observed by
Stanek et al. (2002a , b) and Wiltse & Glezer (1998), the effect of the HF forcing on the
spectra at sensors C3, C5 and C10 is a decrease of the large-scale energy level and an
increase of the small scales. Stanek et al. have proposed splitting the energy spectrum
into two parts. The left portion of the spectrum (frequencies lower than the forcing
one) has a decelerated cascade with a lower energy transfer from the large to the small
scales. Since the turbulent kinetic energy production (figure 27) is lower than in the
baseline case, this energy transfer is also lower. The right portion of the spectrum can
have either a lower or higher energy content because of two competing influences: the
lower energy transfer from the larger-scale part and the energy input of the forcing.

In summary, in the LF case, the Q-criterion isosurface has demonstrated the forma-
tion of large spanwise vortices which are convected downstream at an average velocity
of 0.33U∞. Pressure spectra in the mixing layer have shown that the global turbulent
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Figure 29. Pressure spectra along the mixing layer for four sensors (a: C1, b: C3, c: C5,
d: C10) and for the three cases: uncontrolled flow (solid line), LF case (dashed line) and HF
case (dotted line).

kinetic energy increase is concentrated in the large scales. The physical explanation
for the 54 % separation length reduction will be established in the next section.

In the HF case, the presence of acoustic waves has been highlighted by an
instantaneous pseudo-schlieren visualization. The existence of these acoustic waves has
been corroborated by the increase of the streamwise velocity fluctuation level upstream
of the actuator location and by an average convection velocity of 320 m s−1 obtained
by a frequency–wavenumber analysis. The separation length increase by 43 % appears
not to be due to a blockage effect induced by the synthetic jet. A decrease of the
turbulent kinetic energy level and lower momentum and vorticity thicknesses have
also been observed. Unlike the LF forcing case, pressure spectra in the shear layer
show a reduction of the large-scale energy level. Stanek et al. (2002a, b) explain this
reduction by a modification of the mean streamwise velocity stability properties as
observed in figure 21. However, a stability analysis of the HF case is required to
definitively conclude on the possible application of Stanek’s model to our case.

5.4. Low-frequency forcing case analysis

The coherent structure location is computed using two-point two-time auto-
correlation of the pressure signal. Only the uncontrolled and the LF cases are
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Figure 31. Instantaneous pressure field and streamlines showing the reattached flow between
two consecutive eddies created by the low-frequency forcing.

considered here, since this kind of analysis is not useful in the HF forcing case. In
the uncontrolled case, the K-H vortex location increases linearly with time between
x/h=0.5 and 2.5 (see figure 30). This demonstrates that the convection velocity is
almost constant. In the LF case, the vortices do not move between times tU∞/h= 0
and 3.5. This corresponds to one half of the actuation period for F + = 0.5. So, during
the blowing phase of the actuation, the two-dimensional vortex forms, grows in size
and its circulation increases. The streamlines roll up (see figure 31). Then, during
the suction phase of the actuation, the vortex leaves the orifice and is convected
with a constant velocity for tU∞/h= 4. Since the flow is reattached between two
consecutive vortices (figure 31) and the vortex formed just downstream of the orifice
is quasi-steady during a significant part of the forcing period, high-momentum fluid is
carried from the free stream toward the wall by an entrainment effect. This mechanism
explains the separation length reduction.
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position x/h (thick solid line: most amplified frequency of two-dimensional linear stability
analysis (equation (5.9)), thin solid line: uncontrolled flow, dotted line: HF case, and diamond
symbol: frequencies corresponding to the spectra peaks of figure 11).

5.5. High-frequency forcing case analysis: inviscid linear stability analysis

The basic equation for linear inviscid stability analysis of parallel shear flows is the
incompressible Rayleigh equation:

(U − β/α) [φ′′ − α2φ] − U ′′φ = 0 (5.7)

where U is mean streamwise velocity, U ′′ is its second derivative in the y-direction, β

is the real angular velocity, α = αr + iαi with αr the wavenumber and αi the spatial
growth rate, and φ is the complex eigenfunction which is the amplitude of the stream
function. The boundary conditions for this equation are

φ(−∞) = φ(+∞) = 0. (5.8)

The numerical method is the same as in Robinet, Dussauge & Casalis (2001). It relies
on a spectral collocation method based on Chebyshev polynomials which provides
an accurate solution of the eigenvalue problem. A standard subroutine from the
LAPACK library is used to compute the eigenvalues.

The natural frequency predicted by the stability analysis is plotted as function of
x/h in figure 32 for both cases. The Kelvin–Helmholtz vortex passage frequency can
be also estimated by means of the local most amplified frequency of a linear stability
analysis in a the case of a two-dimensional free shear layer as estimated by Huerre
& Rossi (1998):

fKH (x) � 0.135
U (x)

δω(x)
. (5.9)

These frequencies are decreasing functions of x/h. In the uncontrolled case, the natural
frequency decreases between the separation point, which is located at x/h = 0.5, and
x/h= 2. Then, the frequency is nearly constant at around 320 Hz whereas the shedding
frequency observed in figure 11 is nearly 800 Hz. Because the K-H vortices are rather
two-dimensional in the initial development of the mixing layer, (5.9) is expected
to yield a reliable estimation of the vortex passage frequency. The natural shear
layer frequency for the uncontrolled case is lower than the frequency given by (5.9).
The results given by the linear stability analysis are in good agreement with the
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frequencies associated with the spectra peaks in figure 11 for the first two points, i.e.
in the region of initial development of the shear layer when the linear hypothesis is
valid. Further downstream, for x/h � 2.5, the frequencies detected in figure 11 are in
better agreement with those given by (5.9). In the HF case, the natural frequency is
higher than in the uncontrolled case. It decreases continuously between x/h = 1 and
3.7 and then it is nearly constant around at 300 Hz.

The evolution of the maximum spatial growth rate as function of position x/h is
displayed in figure 33. In the uncontrolled case, the growth rate increases from the
beginning of the shear layer up to (x−xs)/L = 0.03, and then it decreases continuously.
In the HF case, the growth rate is always higher than in the uncontrolled case because
of the higher backflow velocity. Nonetheless, the amplitude of the perturbation is not
given by the local growth rate but rather by the growth rate integral from the
separation point to the abscissa considered, as seen in figure 34. This figure shows
that the amplitude of the perturbation in the HF case is seven times lower than in the
uncontrolled case at location (x −xs)/L = 0.2 and four times lower at (x −xs)/L = 0.9.
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As expected from figure 33, the main part of the difference between the two levels
of perturbation is observable from the separation point. Consequently, the separation
length appears to be closely tied to the growth rate of the perturbations at this point.
This analysis is based on the fact that a lower level of perturbation results in a
reduced entrainment of momentum leading to a reduced spreading of the separated
mixing layer and subsequently to an increased separation length. We find here a
confirmation of Stanek’s hypothesis (Stanek et al. (2002a, b) that the effect of the
high-frequency forcing is a modification of the mean streamwise velocity field which
leads to a lower perturbation amplitude.

6. Conclusion
Numerical simulations of the controlled flow over a smooth ramp have been

performed to study the influence of synthetic jet frequency on the flow and to assess
the efficiency of synthetic jets in reducing separation length. In the first part, LES of
the separated flow has been validated through comparisons with DNS results. The
agreement is very good for both the mean and fluctuating velocity profiles. Then,
two different reduced frequencies with opposite effects on the separation length have
been considered: a low-frequency forcing at F + = 0.5 and a high-frequency forcing at
F + = 4. The first case corresponds to a vorticity-dominated mode and the second to
an acoustic-dominated mode.

For F + = 0.5, the separation length is reduced by half for a velocity ratio of 0.5. This
frequency corresponds to the presence of a single large vortex in the separated zone
and is close to the natural shedding frequency. The LF forcing increases the turbulent
kinetic energy level. Moreover, the level of turbulent kinetic energy production is
twice that in the uncontrolled case and three times higher than in the HF case. A
careful examination of pressure spectra in the mixing layer reveals that the increase of
the energy level is restricted to the large scales. Since the flow is reattached between
two consecutive vortices and the vortex formed just downstream of the orifice is
quasi-steady during a significant part of the forcing period, high-momentum fluid is
carried from the free stream toward the wall by an entrainment effect. This mechanism
explains the separation length reduction. Afterwards, during the suction phase, this
vortex leaves the orifice and is convected at an average velocity equal to 0.33U∞.

The effect of the HF forcing at F + = 4 is an increase of the separation length
by 43 %. Flow visualization, time-averaged streamwise velocity fluctuation profiles
and two-point two-time correlations have shown that for high forcing frequency the
synthetic jet generates large-amplitude sound waves and operates in an acoustic-
dominated mode. Nevertheless, the forcing has a significant influence on the mean
streamwise velocity profile. A linear inviscid stability analysis has demonstrated that
the reason for the increase of the separation length is a lower amplitude of the
perturbations than in the uncontrolled case. This is due to a lower spatial growth
rate near the separation point. Consequently, the effect of the HF forcing is a
modification of the mean streamwise velocity profile stability as suggested by Stanek
et al. (2002a , b). Consistently with findings of these authors, the HF forcing decreases
the turbulent kinetic energy for x/h � 1. This reduction is concentrated in the large
scales. To our knowledge, this paper constitutes the first demonstration, by numerical
simulations of a fully turbulent flow, of Stanek’s hypothesis.

The authors warmly acknowledge Dr Jean-Christophe Robinet for providing the
linear inviscid stability solver.
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